Final Exam Review Session - Problems

Peyam Ryan Tabrizian

Wednesday, August 10th, 2011

1 Integrals

Problem 1: Using the definition of the integral, evaluate:

$$
\int_{0}^{1}\left(x^{2}-1\right) d x
$$

You may use the following formulas:

$$
\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Problem 2: Evaluate the following limit:

$$
\lim _{n \rightarrow \infty} \frac{1^{4}}{n^{5}}+\frac{2^{4}}{n^{5}}+\cdots+\frac{n^{4}}{n^{5}}
$$

Problem 3: Evaluate the following integrals
(a) $\int_{0}^{1} x-\frac{1}{\sqrt{x}}+x \sqrt{x} d x$
(b) $\int_{-5}^{5} \sqrt{25-x^{2}} d x$
(c) $\int_{-1}^{1} 1-|x| d x$
(d) $\int(1+\tan (\theta))^{5} \sec ^{2}(\theta) d \theta$
(e) $\int_{1}^{4} \frac{e \sqrt{x}}{\sqrt{x}} d x$
(f) The derivative of $g(x)=\int_{\tan (x)}^{\ln (x)} \frac{1}{\ln (t)} d t$
(g) $\int_{-2 \pi}^{2 \pi}\left(\sin \left(x^{3}\right)\right)^{2011}\left(\cos \left(e^{x^{2}}\right)\left(x^{42}+1\right)\right) d x$
(h) An antiderivative F of $f(x)=\frac{1}{x^{2}+1}+\frac{1}{\sqrt{1-x^{2}}}$ which satisfies $F(0)=1$.
(i) The average value of $f(x)=\sin (x) \cos (x)^{4}$ over $[0, \pi]$

Problem 4:

Find the area of the region enclosed by $y=x^{2}-2 x$ and $y=x+4$

2 Limits

Problem 5: Evaluate the following limits

(a) $\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}}$
(b) $\lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{x}}$
(c) $\lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\sin \left(\frac{1}{x}\right)}$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+2 x}}{x^{2}}$

3 Derivatives / Max/Min

Problem 6 Find the derivatives of the following functions:

(a) $f(x)=\ln (\ln (\ln (\ln (x))))$
(b) $f(x)=x^{\sin (x)}$
(c) y^{\prime}, where $x^{2}+x y+y^{2}=\sin (y)$
(d) y^{\prime} at $\left(0, \frac{1}{2}\right)$, where $x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}$

Problem 7

Find the absolute \max / \min of $f(x)=x^{3}-3 x+1$ on $[0,3]$

4 Final Exam Deluxe

Problem 8

If $f(0)=0$ and $f^{\prime}(x) \geq 1$ for $0 \leq x \leq 1$, how small can $f(1)$ possibly be?

Problem 9

Show $2 x-1-\sin (x)=0$ has at most one zero.

Problem 10

A ladder 5 feet long rests against a vertical wall. The bottom of the ladder slides away from the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$. How fast is the angle between the ladder and the ground changing when the bottom is 4 feet from the wall?

Problem 11

A farmer wants to fence an area of 600 square feet in a rectangular field and then divide it in half with a fence parallel to one of the sides of the rectangle. Find the dimensions of the fence that minimize the cost of building the fence?

